Analysis of lipolytic protein trafficking and interactions in adipocytes.
نویسندگان
چکیده
This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMP-dependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormonesensitive lipase (HSL) to perilipin A (Plin)-containing droplets and increases the colocalization of adipose tissue triglyceride lipase (Atgl) with its coactivator, Abhd5. Imaging of live 3T3-L1 preadipocytes transfected with Aquorea victoria-based fluorescent reporters demonstrated that HSL rapidly and specifically translocates to lipid droplets (LDs) containing Plin, and that this translocation is partially dependent on Plin phosphorylation. HSL closely, if not directly, interacts with Plin, as indicated by fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) experiments. In contrast, tagged Atgl did not support FRET or BiFC with Plin, although it did modestly translocate to LDs upon stimulation. Abhd5 strongly interacted with Plin in the basal state, as indicated by FRET and BiFC. PKA activation rapidly (within minutes) decreased FRET between Abhd5 and Plin, and this decrease depended upon Plin phosphorylation. Together, these results indicate that Plin mediates hormone-stimulated lipolysis via direct and indirect mechanisms. Plin indirectly controls Atgl activity by regulating accessibility to its coactivator, Abhd5. In contrast, Plin directly regulates the access of HSL to substrate via close, if not direct, interactions. The differential interactions of HSL and Atgl with Plin and Abhd5 also explain the findings that following stimulation, HSL and Atgl are differentially enriched at specific LDs.
منابع مشابه
Cell Biology Symposium: imaging the organization and trafficking of lipolytic effectors in adipocytes.
The storage and mobilization of lipid energy are central functions of adipocytes. Lipid energy is stored as triglyceride in lipid droplet structures that are now recognized as bona fide organelles and whose functions are greatly influenced by members of the perilipin family of lipid droplet scaffolds. Recent work indicates that the signaling events underlying fatty acid mobilization involve pro...
متن کاملEvaluation of Human Breast Adenocarcinoma (MCF-7) Cells Proliferation in Co-Culture with Human Adipocytes in Three Dimensional Collagen Gel Matrix: Norepinephrine as a Lipolytic Factor
Background: Norepinephrine plays a trophic role in the control of cell replication and differentiation in target cells that express adrenergic receptors. Methods: In this study, we have tested the influence of infraphysiological, physiological and supraphysiological concentrations (0.0001 nM, 1 nM, 10000 nM) of human norepinephrine on the proliferation of breast cancer cells (human breast adeno...
متن کاملAnalysis of Lipolytic Protein Trafficking and Interactions
This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMPdependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormonesensitive lipase (HSL) to perilipin A (Plin)-containing droplets and increases the colocalization ...
متن کاملIncreased 4-Hydroxynonenal Formation Contributes to Obesity-Related Lipolytic Activation in Adipocytes
Oxidative stress in adipose tissue plays an etiological role in a variety of obesity-related metabolic disorders. We previously reported that increased adipose tissue 4-hydroxynonenal (4-HNE) contents contributed to obesity-related plasma adiponectin decline in mice. In the present study, we investigated the effects of intracellular 4-HNE accumulation on lipolytic response in adipocytes/adipose...
متن کاملLipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases.
Hormone-sensitive lipase (HSL) is presumed to be essential for lipolysis, which is defined as the mobilization of free fatty acids from adipocytes. In the present study, we investigated the effects of various lipolytic hormones on the lipolysis in adipocytes derived from mouse embryonic fibroblasts (MEF adipocytes) prepared from HSL-deficient mice (HSL-/-). HSL-/- MEF differentiated into mature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 282 8 شماره
صفحات -
تاریخ انتشار 2007